Name of Faculty: Ms. Nisha

Discipline : Electrical Semester : 4th sem

Subject : Electronics-II

Lesson Plan Duration: 15 weeks(from jan 2018 to april 2018)

Work Load (lecture/practical)per week (in hours): Lectures- 04, practical- 03

Week	Theory		Practical		
	Lecture Day	Topic(including assignment/test)	Practical Day	Practical Topic	
1	1(unit 1)	Difference between voltage and power amplifier	1	Plot frequency response of two stage RC copled amplifier	
	2	collector efficiency, distortion and dissipation capacity	2	Plot frequency response of two stage RC copled amplifier	
	3	Explanation of Class A amplifier	3	Plot frequency response of two stage RC copled amplifier	
	4	Explanation of Class B amplifier	4	Plot frequency response of two stage RC copled amplifier	
2		Explanation of Class C amplifier	5	Measure optimum load and power of a push pull amplifier	
	5	Working of Class A single ended amplifier and its collector efficiency	6	Measure optimum load and power of a push pull amplifier	
		Impedence matching in power amplifier using transformer	7	Measure optimum load and power of a push pull amplifier	
	8	Heat sink in power amplifier	8	Measure optimum load and power of a push pull amplifier	
3	9	Working and advantages of push pull amplifier	9	Observe voltage gainof transistor amplifier by removing bye-pass capacitor	
	10	Working of complementary symmetry push pull amplifier	10	Observe voltage gainof transistor amplifier by removing bye-pass capacitor	
	11	Revision of previous topics	11	Observe voltage gainof transistor amplifier by removing bye-pass capacitor	
	12	Assignment of classification of power amplifiers	12	Observe voltage gainof transistor amplifier by removing bye-pass capacitor	
4	13(unit2)	Introduction of tuned voltage amplifier	13	Measure voltage gain of emitter follower circuit	

	14	Series Resonance and parallel Resonance	14	Measure voltage gain of emitter follower circuit
	15	Working of single tuned voltage amplifier	15	Measure voltage gain of emitter follower circuit
	16	Working of double tuned voltage amplifier	16	Measure voltage gain of emitter follower circuit
5	17	Frequency response of tuned voltge amplifier	17	Viva-voice of previous practicals
	18	Application of tuned voltage amplifier	18	Viva-voice of previous practicals
	19	Revision of previous topics	19	Viva-voice of previous practicals
	20	test of previous chapters	20	Viva-voice of previous practicals
6	21(unit 3)	Feedback, positive and negative feedback	21	Measure frequency generation in hartley and R-C phase shift oscillator
	22	Voltage gain of amplifier using negative feedback	22	Measure frequency generation in hartley and R-C phase shift oscillator
	23	Effect of negative feedback on voltage gain, stability, distortion, Bandwidth, input and output impedence	23	Measure frequency generation in hartley and R-C phase shift oscillator
	24	Effect of emitter by pass capacitor on CE transistor amplifier	24	Measure frequency generation in hartley and R-C phase shift oscillator
7	25	Emitter Follower and its applications	25	Differentiated and integrated square wave on CRO
	26(unit 4)	Sinusoidal Oscillator and positive feedback in amplifiers	26	Differentiated and integrated square wave on CRO
	27	Difference between oscilator and alternator	27	Differentiated and integrated square wave on CRO
	28	Essential of an oscillator	28	Differentiated and integrated square wave on CRO
8	29	Working of tuned collector oscillator	29	Observe waveshape of clipping circuit
	30	Hartley and colpitt's oscillator	30	Observe waveshape of clipping circuit
	31	R-C phase shift and Wein bridge oscillator	31	Observe waveshape of clipping circuit
	32	Piezoelectric and crystal oscillator	32	Observe waveshape of clipping circuit
9	33(unit 5)	Concept of waveshaping	33	Observe waveshape of clamping circuit

	34	R-C differentiating and integrating circuits	34	Observe waveshape of clamping circuit
	35	Diode clipping circuit	35	Observe waveshape of clamping circuit
	36	Diode clamping circuit	36	Observe waveshape of clamping circuit
10	37	Application of wave-shaping circuit	37	Observe square wave of astable multivibrator on CRO
	38	Transistor as a switch	38	Observe square wave of astable multivibrator on CRO
	39	Working of bistable multivibrator	39	Observe square wave of astable multivibrator on CRO
	40	Working of monostabletable multivibrator	40	Observe square wave of astable multivibrator on CRO
11	41	Working of astable multivibrator	41	Observe square wave of Bistable multivibrator on CRO
	42	Revision of previous topics	42	Observe square wave of Bistable multivibrator on CRO
	43	Revision of previous topics	43	Observe square wave of Bistable multivibrator on CRO
	44	Test of previous chapters	44	Observe square wave of Bistable multivibrator on CRO
12	45(unit 6)	Working of CVT	45	Viva-voice of previous practicals
	46	Working of IC voltage rgulator (78XX/79XX)	46	Viva-voice of previous practicals
	47(unit 7)	Intoduction of basic of operational amplifier	47	Viva-voice of previous practicals
	48	Differential amlifier	48	Viva-voice of previous practicals
13	49	Emitter coupled differential amplifier	49	Application performed using operational amplifier
	50	Offset even voltages and current	50	Application performed using operational amplifier
	51	Operational amplifier as integrator	51	Application performed using operational amplifier
	52	Operational amplifier as differentiator	52	Application performed using operational amplifier
14	53	Operational amplifier as summer and subtractor	53	Study of 555 IC as monostable and astable multivibrator
	54	Pin configuration of 741 IC	54	Study of 555 IC as monostable and astable multivibrator
	55	Assignment of important very short answer questions	55	Study of 555 IC as monostable and astable multivibrator

	56	Block diagram of 555 IC timer	56	Study of 555 IC as monostable and astable multivibrator
15	57	Revision of previous topics	57	Viva-voice of all practicals
	58	Revision of previous topics	58	Viva-voice of all practicals
	59	Test of previous chapters	59	Viva-voice of all practicals
	60	Revision of all syllabus	60	Viva-voice of all practicals