Lesson Plan (Energy Management) Name of Faculty Ms. Priyanka Discipline Electrical Engineering Semester Subject Energy Management Lesson plan duration 15 weeks (from January 18 to April 18) Work Load(Lecture/Practical) per week: Lectures-04, Practicals-nil | Week | Theory | | Practical | | |-----------------|--------------------------|--|-----------------|-------| | | Lecture Day | Topic(including assignment/test) | Practical day | Topic | | 1 st | 1 st (Unit-1) | Learning outcomes of the subject | | | | | 2 st | Introduction of energy management | 1 | | | | 3^{rd} | Need of the energy management | 7 | | | | 4 th | Environmental aspects | 7 | | | 2 nd | 5 th | Energy conversation and its need | | | | | 6 th | Oil and coal sources crisis, alternative sources of energy | | | | | $7^{ m th}$ | Energy efficiency and its significance | | | | | 8 th | Rewind of above topics/HSBTE Question paper discussion | 1 | | | 3 rd | 9 th (UNIT-2) | Energy conservation in domestic sector-
lighting | | | | | 10 th | EC in other home appliances | 7 | | | | 11 th | Energy conservation in industry sector-
lighting | | | | | 12 th | distribution and motor pump | | | | 4 th | 13 th | ECin fans and blowers etc. | 4 th | | | | 14 th | Energy conservation in agriculture sector-
tube well pumps etc. | | | | | 15 th | Diesel gen. sets etc. | 1 | | | | 16 th | Macro Level approach for energy
conservation at design stage | | | | 5 th | 17 th | Above topic will continue | 5 th | | |------------------|------------------|---|-----------------|--| | | 18 th | Rewind for above chapter due to leave etc. | | | | | 19 th | Board questions paper and surprise tests will be held. |] | | | | 20 th | Surprise tests will continue. | 1 | | | 6 th | 21th | • First assignment will be given and tentative 1 st sessional test/evaluation of sessional marks etc. | | | | | 22th | Display and analysis of sessional marks |] | | | | 23th(unit-3) | Introduction of energy efficient devices. | 1 | | | | 24 th | Energy efficient technology an overview -
merits, demerits, construction of LCD, LED, CFL
etc. | | | | 7 th | 25 th | Energy efficient technology an overview -
merits, demerits, construction of LCD, LED, CFL
etc. | | | | | 26th | Need for energy efficient devices |] | | | | 27 th | Initial cost versus life cycle, cost analysison life cycle basis | 1 | | | | 28th | Energy efficient motors as compared to
standard motors | | | | 8 th | 29 th | Revision of above topics, surprise test. | | | | | 30 th | BIS standards for energy efficient motors, BIS salient design features, | | | | | 31th | Efficiency as a function of load, safety margins | | | | | 32th | Energy efficient lighting system different
sources, lumens/watt, LEDs, role of voltage on
efficiency | | | | 9 th | 33th | Distribution system- Optimum cable size,
amorphous core transformer, role of power factor,
use of compensating capacitors-manual and
automatic, location of capacitors | | | | | 34 th | Calculation of size of capacitor, shunt capacitors, series capacitors |] | | | | 35 th | Construction and design characteristics of
energy efficient motors. Losses in energy efficient
motors. | | | | | 36 th | • Revision of above topics, second assignment will be given and tentative 2 nd sessional test/evaluation of sessional marks etc |] | | | 10 th | 37 th | display and analysis of sessional marks. | | | | I | 38 th (unit-4) | 1 | ı | |------------------|---------------------------|--|---------------| | | 38 (unit-4) | introduction of energy energy audit | | | | 39 th | Energy audit methodology | | | | 40 th | Efficiency of energy conversion processes,
monitoring system | | | 11 th | 41th | • Specific energy consumption –three pronged approach, fine tuning | | | | 42th | technical up gradation, avoidable losses | | | | 43th | case study of energy audit of distribution
system | | | | 44 th | case study of Industries etc. | | | 12 th | 45 th | Any left out topic due to leave etc. | | | | 46 th | Same as above | | | | 47 th | Case study of ac motors, audit activites. | | | | 48 th | To help students how to fill up various audit performa etc. | | | 13th | 49 th (unit-5) | Introduction of EIA | | | | 50 th | Definition of EIA, Need of EIA.Format of assessment and its completion etc. | | | | 51th | • 3 rd assignment will be given. | | | | 52th | Previous state boards question will be carried out, any other left out topic | | | 14 th | 53th | • 3 rd sessional test | | | | 54 th | • Evaluation of 3 rd test | | | | 55th | Display/analysis of 3 rd sessional test | | | | 56 th | Remedial will be taken if any shortcomings found | | | 15 th | 57 th | Seminal/group discussion as per evaluation scheme | | | | 58 th | • -do- | | | | 59 th | • -do- | | | | 60 th | • -do- | | | | L | L | | | 16 th | • | Preparation of sessionals, practical award etc. | | |------------------|---|---|--| | | | | |